Building a Music Streaming Platform Like Spotify

Designing a music streaming platform is a classic system design challenge that tests your ability to handle massive binary data (audio), low-latency content delivery, complex relational metadata, and real-time user interactions. This comprehensive guide walks through the architecture of a Spotify-like system using a systematic, interview-ready approach.
#system
single

๐Ÿ“น Video Reference: This blog post is based on the 7-step system design interview framework demonstrated in System Design Interview: A Step-By-Step Guide by ByteByteGo.

The 7-Step Framework:

  1. Requirements & Assumptions - Define scope and constraints
  2. Capacity Planning - Estimate storage, bandwidth, and throughput
  3. High-Level Architecture - Design system components and data flow
  4. Data Models - Structure databases and relationships
  5. API Design - Define interfaces and contracts
  6. Critical Flow - Detail the most important user journey
  7. Scalability - Plan for growth from MVP to global scale

Table of Contents

Core Framework (Steps 1-7):

  1. Step 1: Requirements & Assumptions
  2. Step 2: Capacity Planning
  3. Step 3: High-Level Architecture
  4. Step 4: Data Models
  5. Step 5: API Design
  6. Step 6: Song Playback Flow (Critical User Journey)
  7. Step 7: Scalability Strategy

Advanced Topics: 8. Advanced Features 9. Monitoring & Observability 10. Security Considerations


1. Requirements & Assumptions

๐Ÿ“‹ Step 1 of 7: Define Scope & Constraints

Functional Requirements

Define what the system must do:

Core Features:

  • Artist Upload: Artists can upload songs with metadata (title, album, genre, cover art)
  • Search & Discovery: Users can search for songs, artists, albums, and playlists
  • Playback: Stream audio with adaptive bitrate based on network conditions
  • Playlist Management: Create, update, delete, and share playlists
  • User Profiles: Manage user accounts, subscriptions, and preferences
  • Social Features: Follow artists, share songs, collaborative playlists
  • Recommendations: Personalized song suggestions based on listening history

Scale Assumptions:

  • Active Users: 500,000 daily active users (DAU) initially
  • Song Library: 30 million songs
  • Concurrent Streams: Peak of 50,000 concurrent streams
  • Upload Rate: 10,000 new songs uploaded daily

Non-Functional Requirements

Performance:

  • Latency: < 200ms for metadata queries
  • Time to First Byte (TTFB): < 500ms for audio streaming
  • Availability: 99.9% uptime (8.76 hours downtime/year)

Audio Quality:

  • Support multiple bitrates: 64kbps (low), 128kbps (normal), 320kbps (high)
  • Adaptive bitrate streaming (ABR) based on network conditions
  • Formats: Ogg Vorbis, AAC, FLAC (lossless for premium)

Storage:

  • Average song file: ~3MB at 128kbps (3.5 minutes)
  • Multiple quality versions per song

2. Capacity Planning

๐Ÿ“Š Step 2 of 7: Estimate Storage, Bandwidth & Throughput

Accurate capacity estimation is crucial for infrastructure provisioning and cost optimization.

Storage Requirements

Audio Storage:

Base calculation:
- 30M songs ร— 3MB/song (128kbps) = 90TB

Multi-bitrate storage:
- 64kbps: 1.5MB/song ร— 30M = 45TB
- 128kbps: 3MB/song ร— 30M = 90TB
- 320kbps: 7.5MB/song ร— 30M = 225TB
Total: 360TB

With 3x replication: 360TB ร— 3 = 1.08PB

Metadata Storage:

Song metadata:
- 30M songs ร— 200 bytes = 6GB

User data:
- 500k users ร— 2KB (profile + preferences) = 1GB

Playlist data:
- Avg 10 playlists/user, 50 songs/playlist
- 5M playlists ร— 1KB = 5GB

Total metadata: ~15GB (easily fits in SQL)

Bandwidth Requirements

Daily Streaming Bandwidth:

Assumptions:
- 500k DAU
- Average 10 songs/user/day
- Average song: 4MB (128kbps)

Daily: 500k ร— 10 ร— 4MB = 20TB/day
Monthly: 20TB ร— 30 = 600TB/month

With CDN: ~80% cache hit ratio
Origin egress: 600TB ร— 0.2 = 120TB/month

Upload Bandwidth:

10,000 songs/day ร— 20MB (uncompressed) = 200GB/day

Database Throughput

Read Operations (QPS - Queries Per Second):

- Song metadata queries: 50k concurrent users ร— 0.1 QPS = 5,000 QPS
- Search queries: 500k DAU ร— 5 searches/day รท 86,400s = ~30 QPS
- User profile: 1,000 QPS
Total read QPS: ~6,000 QPS

Write Operations:

- Song uploads: 10,000/day รท 86,400s = ~0.12 QPS
- Playlist updates: ~50 QPS
- Play count updates: 5,000 QPS (batch these!)

3. High-Level Architecture

๐Ÿ—๏ธ Step 3 of 7: Design System Components & Data Flow

The system follows a microservices architecture with clear separation of concerns.

Component Responsibilities

API Gateway:

  • Authentication & authorization (JWT validation)
  • Rate limiting (prevent abuse)
  • Request routing
  • SSL termination

User Service:

  • User registration/login
  • Profile management
  • Subscription handling
  • User preferences

Song Service:

  • Song metadata CRUD
  • Artist management
  • Album management
  • Play count tracking (batched writes)

Playlist Service:

  • Playlist CRUD operations
  • Collaborative playlists
  • Playlist sharing

Search Service:

  • Full-text search across songs, artists, albums
  • Auto-complete suggestions
  • Trending searches

Stream Service:

  • Generate signed URLs for audio files
  • Handle playback sessions
  • Adaptive bitrate logic

Upload Service:

  • Handle artist uploads
  • Queue songs for encoding
  • Validate file formats

4. Data Models (Relational Database)

๐Ÿ’พ Step 4 of 7: Structure Databases & Relationships

We use PostgreSQL for structured metadata with strong consistency requirements.

Database Indexing Strategy

Critical Indexes:

-- Users
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_subscription ON users(subscription_type);

-- Songs
CREATE INDEX idx_songs_artist ON songs(artist_id);
CREATE INDEX idx_songs_album ON songs(album_id);
CREATE INDEX idx_songs_genre ON songs(genre);
CREATE INDEX idx_songs_play_count ON songs(play_count DESC);

-- Playlists
CREATE INDEX idx_playlists_user ON playlists(user_id);
CREATE INDEX idx_playlists_public ON playlists(is_public) WHERE is_public = true;

-- Listening History (partitioned by month)
CREATE INDEX idx_history_user_time ON listening_history(user_id, played_at DESC);
CREATE INDEX idx_history_song_time ON listening_history(song_id, played_at DESC);

5. API Design

๐Ÿ”Œ Step 5 of 7: Define Interfaces & Contracts

RESTful API endpoints with proper versioning and pagination.

Authentication Endpoints

POST /api/v1/auth/register
POST /api/v1/auth/login
POST /api/v1/auth/refresh
POST /api/v1/auth/logout

Example Request/Response:

POST /api/v1/auth/login
{
  "email": "[email protected]",
  "password": "securePassword123"
}

Response 200:
{
  "access_token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9...",
  "refresh_token": "...",
  "expires_in": 3600,
  "user": {
    "user_id": 12345,
    "display_name": "John Doe",
    "subscription_type": "premium"
  }
}

Search & Discovery

GET /api/v1/search?q={query}&type={song,artist,album,playlist}&limit={20}&offset={0}
GET /api/v1/songs/trending?genre={genre}&region={us}&limit={50}
GET /api/v1/recommendations?user_id={id}&limit={20}

Example:

GET /api/v1/search?q=bohemian&type=song&limit=5

Response 200:
{
  "results": [
    {
      "type": "song",
      "song_id": 98765,
      "title": "Bohemian Rhapsody",
      "artist": {
        "artist_id": 111,
        "name": "Queen"
      },
      "album": {
        "album_id": 222,
        "title": "A Night at the Opera",
        "cover_art_url": "https://cdn.example.com/covers/222.jpg"
      },
      "duration": 354,
      "play_count": 5000000000
    }
  ],
  "total": 1,
  "limit": 5,
  "offset": 0
}

Song Metadata & Streaming

GET /api/v1/songs/{song_id}
GET /api/v1/songs/{song_id}/stream?quality={low,normal,high}
POST /api/v1/songs/{song_id}/play

Stream Endpoint Response:

GET /api/v1/songs/98765/stream?quality=high

Response 200:
{
  "song_id": 98765,
  "title": "Bohemian Rhapsody",
  "artist": "Queen",
  "duration": 354,
  "stream_url": "https://cdn.example.com/audio/...[signed-url]...",
  "expires_at": "2026-01-05T12:00:00Z",
  "bitrate": 320,
  "format": "aac"
}

Playlist Management

GET /api/v1/playlists/{playlist_id}
POST /api/v1/playlists
PUT /api/v1/playlists/{playlist_id}
DELETE /api/v1/playlists/{playlist_id}
POST /api/v1/playlists/{playlist_id}/songs
DELETE /api/v1/playlists/{playlist_id}/songs/{song_id}

Artist Upload

POST /api/v1/upload/song
GET /api/v1/upload/status/{upload_id}

Upload Flow:

POST /api/v1/upload/song
Content-Type: multipart/form-data

{
  "audio_file": [binary],
  "title": "New Song",
  "album_id": 222,
  "genre": "rock",
  "duration": 240
}

Response 202 Accepted:
{
  "upload_id": "upload_abc123",
  "status": "processing",
  "estimated_time_seconds": 120
}

6. Song Playback Flow

๐ŸŽต Step 6 of 7: Detail the Most Critical User Journey

This is the most critical user journey. Let's break it down step-by-step.

Key Implementation Details

1. JWT Authentication

async def validate_token(token: str) -> User:
    try:
        payload = jwt.decode(token, SECRET_KEY, algorithms=["HS256"])
        user_id = payload.get("user_id")

        # Check subscription level
        if not await check_subscription(user_id):
            raise HTTPException(status_code=403, detail="Subscription expired")

        return User(id=user_id, subscription=payload.get("subscription"))
    except JWTError:
        raise HTTPException(status_code=401, detail="Invalid token")

2. Signed URL Generation (S3 Presigned URL)

import boto3
from datetime import timedelta

async def generate_signed_url(s3_key: str, expiry_seconds: int = 3600) -> str:
    s3_client = boto3.client('s3')

    signed_url = s3_client.generate_presigned_url(
        'get_object',
        Params={
            'Bucket': 'music-streaming-audio',
            'Key': s3_key
        },
        ExpiresIn=expiry_seconds
    )

    return signed_url

3. HTTP Range Requests (Streaming)

The mobile app uses HTTP Range requests to stream audio in chunks:

GET /audio/song_98765_320kbps.aac
Range: bytes=0-524287

Response 206 Partial Content:
Content-Range: bytes 0-524287/7864320
Content-Length: 524288
Content-Type: audio/aac

[binary audio data]

4. Adaptive Bitrate Streaming

The client monitors network conditions and switches quality:

// Client-side logic
function selectBitrate(networkSpeed) {
  if (networkSpeed < 500) return 64 // kbps
  if (networkSpeed < 1500) return 128
  return 320
}

// Monitor and adapt
setInterval(() => {
  const speed = measureNetworkSpeed()
  const newBitrate = selectBitrate(speed)

  if (newBitrate !== currentBitrate) {
    switchStreamQuality(newBitrate)
  }
}, 10000) // Check every 10 seconds

5. Play Count Analytics (Batched Writes)

Don't update the database on every play immediately. Batch writes to reduce load:

from collections import defaultdict
import asyncio

play_count_buffer = defaultdict(int)
BATCH_SIZE = 1000
BATCH_INTERVAL = 60  # seconds

async def record_play(song_id: int):
    play_count_buffer[song_id] += 1

    if sum(play_count_buffer.values()) >= BATCH_SIZE:
        await flush_play_counts()

async def flush_play_counts():
    if not play_count_buffer:
        return

    # Bulk update
    async with db_pool.acquire() as conn:
        values = [(count, song_id) for song_id, count in play_count_buffer.items()]
        await conn.executemany(
            "UPDATE songs SET play_count = play_count + $1 WHERE song_id = $2",
            values
        )

    play_count_buffer.clear()

# Background task
asyncio.create_task(periodic_flush())

7. Scalability (Scaling to 50M Users)

๐Ÿš€ Step 7 of 7: Plan for Growth from MVP to Global Scale

Scaling from 500K to 50M users requires architectural evolution.

Database Scaling Strategies

1. Read Replicas (Leader-Follower Replication)

Configuration:

  • 1 Leader (handles all writes)
  • 5-10 Read Replicas (distribute read traffic)
  • Async replication (acceptable replication lag: < 100ms)

2. Database Sharding (Horizontal Partitioning)

When metadata grows beyond a single instance (50GB+ users, 20GB+ songs), shard by key:

User Data Sharding:

def get_user_shard(user_id: int, num_shards: int = 10) -> int:
    return user_id % num_shards

# Route queries to the correct shard
shard_id = get_user_shard(user_id, num_shards=10)
db_conn = shard_connections[shard_id]

Song Data Sharding:

# Shard by artist_id for co-location of artist's songs
def get_song_shard(artist_id: int, num_shards: int = 20) -> int:
    return artist_id % num_shards

3. Caching Strategy

Cache Keys:

song:{song_id}:metadata           TTL: 1 hour
user:{user_id}:profile            TTL: 30 min
playlist:{playlist_id}            TTL: 15 min
trending:songs:{genre}:{region}   TTL: 5 min
search:autocomplete:{prefix}      TTL: 24 hours

Cache Invalidation:

async def update_song_metadata(song_id: int, data: dict):
    # Update database
    await db.execute("UPDATE songs SET ... WHERE song_id = $1", song_id)

    # Invalidate cache
    await redis.delete(f"song:{song_id}:metadata")

CDN Strategy

Geographic Distribution:

Region-based CDN PoPs:
- North America: 15 edge locations
- Europe: 12 edge locations
- Asia-Pacific: 10 edge locations
- South America: 5 edge locations
- Africa/Middle East: 3 edge locations

Total: 45+ edge locations globally

Cache Configuration:

# CDN cache rules
location /audio/ {
    proxy_cache audio_cache;
    proxy_cache_valid 200 7d;      # Cache for 7 days
    proxy_cache_lock on;           # Prevent thundering herd
    proxy_cache_use_stale error timeout updating;
    add_header X-Cache-Status $upstream_cache_status;
}

Benefits:

  • 80-90% cache hit ratio
  • Reduced origin egress costs (from 600TB to ~60TB/month)
  • Lower latency (< 50ms to CDN edge vs. 200ms+ to origin)

Auto-Scaling

API Server Auto-Scaling:

# Kubernetes HPA (Horizontal Pod Autoscaler)
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: api-server-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: api-server
  minReplicas: 10
  maxReplicas: 200
  metrics:
    - type: Resource
      resource:
        name: cpu
        target:
          type: Utilization
          averageUtilization: 70
    - type: Resource
      resource:
        name: memory
        target:
          type: Utilization
          averageUtilization: 80

Message Queue for Async Processing

Use Kafka or RabbitMQ for:

  • Audio encoding (upload โ†’ encode โ†’ store)
  • Play count updates (batch writes)
  • Recommendation engine updates
  • Analytics processing
# Producer (API Server)
async def handle_song_upload(file: UploadFile):
    upload_id = str(uuid.uuid4())

    # Store raw file temporarily
    await s3.upload_file(file, f"uploads/{upload_id}.raw")

    # Queue encoding job
    await kafka_producer.send('song-encoding', {
        'upload_id': upload_id,
        'artist_id': artist_id,
        's3_key': f"uploads/{upload_id}.raw",
        'target_bitrates': [64, 128, 320]
    })

    return {"upload_id": upload_id, "status": "queued"}

# Consumer (Encoder Worker)
async def encode_song(message):
    upload_id = message['upload_id']

    # Download raw file
    raw_audio = await s3.download(message['s3_key'])

    # Encode to multiple bitrates
    for bitrate in message['target_bitrates']:
        encoded = await encode_audio(raw_audio, bitrate)
        s3_key = f"audio/{artist_id}/{upload_id}_{bitrate}kbps.aac"
        await s3.upload(s3_key, encoded)

        # Update database
        await db.insert_song_file(upload_id, bitrate, s3_key)

    # Clean up raw file
    await s3.delete(message['s3_key'])

8. Advanced Features

๐Ÿ’ก Beyond the Core Framework

The following sections explore advanced features that would enhance the platform beyond the core MVP design.

Recommendation Engine

Collaborative Filtering:

from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors

async def get_recommendations(user_id: int, limit: int = 20):
    # Build user-song interaction matrix
    # Rows: users, Columns: songs, Values: play counts
    matrix = build_interaction_matrix()

    # Find similar users
    model = NearestNeighbors(metric='cosine', algorithm='brute')
    model.fit(matrix)

    distances, indices = model.kneighbors(
        matrix[user_id],
        n_neighbors=50
    )

    # Aggregate songs from similar users
    recommended_songs = aggregate_songs_from_users(indices)

    # Filter out already listened songs
    user_history = await get_user_history(user_id)
    recommendations = [
        song for song in recommended_songs
        if song not in user_history
    ][:limit]

    return recommendations

Content-Based Filtering:

from sentence_transformers import SentenceTransformer

# Embed song metadata (title, artist, genre, lyrics)
model = SentenceTransformer('all-MiniLM-L6-v2')

async def find_similar_songs(song_id: int, limit: int = 10):
    # Get song metadata
    song = await db.get_song(song_id)

    # Create text representation
    text = f"{song.title} {song.artist} {song.genre} {song.lyrics}"

    # Embed
    query_embedding = model.encode(text)

    # Search in vector database (Pinecone, Milvus, etc.)
    results = await vector_db.search(query_embedding, limit=limit)

    return results

Real-Time Lyrics Sync

GET /api/v1/songs/98765/lyrics

Response 200:
{
  "song_id": 98765,
  "lyrics": [
    {
      "start_time": 0.5,
      "end_time": 3.2,
      "text": "Is this the real life?"
    },
    {
      "start_time": 3.5,
      "end_time": 6.8,
      "text": "Is this just fantasy?"
    }
  ]
}

Social Features

Activity Feed:

# Redis Sorted Set for activity timeline
async def add_activity(user_id: int, activity: dict):
    timestamp = time.time()
    activity_json = json.dumps(activity)

    await redis.zadd(
        f"user:{user_id}:feed",
        {activity_json: timestamp}
    )

    # Keep only last 1000 activities
    await redis.zremrangebyrank(f"user:{user_id}:feed", 0, -1001)

async def get_feed(user_id: int, limit: int = 50):
    # Get following list
    following = await db.get_following(user_id)

    # Aggregate activities from followed users
    activities = []
    for followed_id in following:
        user_activities = await redis.zrange(
            f"user:{followed_id}:feed",
            0, -1,
            desc=True
        )
        activities.extend(user_activities)

    # Sort by timestamp and limit
    activities.sort(key=lambda x: x['timestamp'], reverse=True)
    return activities[:limit]

Offline Mode

Download Management:

# Client-side
async def download_playlist(playlist_id: int):
    songs = await api.get_playlist_songs(playlist_id)

    for song in songs:
        # Download highest quality user has access to
        stream_url = await api.get_stream_url(song.id, quality='high')

        # Download to local storage
        await download_file(stream_url, f"downloads/{song.id}.aac")

        # Store metadata
        await local_db.save_song_metadata(song)

    await local_db.mark_playlist_downloaded(playlist_id)

9. Monitoring & Observability

Key Metrics to Track

Application Metrics:

from prometheus_client import Counter, Histogram, Gauge

# Request metrics
request_count = Counter('http_requests_total', 'Total HTTP requests', ['method', 'endpoint', 'status'])
request_duration = Histogram('http_request_duration_seconds', 'HTTP request duration')

# Business metrics
songs_streamed = Counter('songs_streamed_total', 'Total songs streamed')
song_upload_errors = Counter('song_upload_errors_total', 'Failed song uploads')
active_streams = Gauge('active_streams_current', 'Current active streams')

# Database metrics
db_query_duration = Histogram('db_query_duration_seconds', 'Database query duration', ['query_type'])
db_connection_pool_size = Gauge('db_connection_pool_size', 'Database connection pool size')

# Cache metrics
cache_hit_rate = Gauge('cache_hit_rate', 'Cache hit rate', ['cache_type'])

Health Checks:

from fastapi import FastAPI, status

@app.get("/health", status_code=status.HTTP_200_OK)
async def health_check():
    # Check database connectivity
    db_healthy = await check_db_health()

    # Check Redis
    cache_healthy = await check_redis_health()

    # Check S3
    storage_healthy = await check_s3_health()

    if not all([db_healthy, cache_healthy, storage_healthy]):
        return {
            "status": "unhealthy",
            "database": db_healthy,
            "cache": cache_healthy,
            "storage": storage_healthy
        }, 503

    return {"status": "healthy"}

Distributed Tracing:

from opentelemetry import trace
from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor

# Initialize tracing
FastAPIInstrumentor.instrument_app(app)

@app.get("/songs/{song_id}/stream")
async def stream_song(song_id: int):
    tracer = trace.get_tracer(__name__)

    with tracer.start_as_current_span("validate_user"):
        user = await validate_token(request.headers['Authorization'])

    with tracer.start_as_current_span("fetch_song_metadata"):
        song = await get_song_metadata(song_id)

    with tracer.start_as_current_span("generate_signed_url"):
        stream_url = await generate_signed_url(song.s3_key)

    return {"stream_url": stream_url}

Alerting:

# Prometheus alerting rules
groups:
  - name: api_alerts
    rules:
      - alert: HighErrorRate
        expr: rate(http_requests_total{status=~"5.."}[5m]) > 0.05
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: 'High error rate detected'

      - alert: HighLatency
        expr: histogram_quantile(0.95, http_request_duration_seconds) > 1.0
        for: 10m
        labels:
          severity: warning
        annotations:
          summary: '95th percentile latency > 1s'

      - alert: DatabaseConnectionPoolExhausted
        expr: db_connection_pool_size / db_connection_pool_max > 0.9
        for: 5m
        labels:
          severity: warning

10. Security Considerations

Authentication & Authorization

JWT Token Structure:

{
  "sub": "12345",
  "user_id": 12345,
  "email": "[email protected]",
  "subscription": "premium",
  "roles": ["user"],
  "iat": 1704470400,
  "exp": 1704474000
}

Rate Limiting:

from slowapi import Limiter
from slowapi.util import get_remote_address

limiter = Limiter(key_func=get_remote_address)

@app.get("/search")
@limiter.limit("100/minute")
async def search(request: Request, q: str):
    return await perform_search(q)

# Premium users get higher limits
@limiter.limit("1000/minute", key_func=get_user_tier)
async def premium_search(request: Request, q: str):
    return await perform_search(q)

Data Protection

Encryption at Rest:

  • Database: AWS RDS encryption (AES-256)
  • S3: Server-side encryption (SSE-S3 or SSE-KMS)
  • Backups: Encrypted with KMS keys

Encryption in Transit:

  • TLS 1.3 for all API communication
  • HTTPS only (HSTS headers)

DRM (Digital Rights Management):

# For premium content
from cryptography.fernet import Fernet

async def encrypt_audio_file(file_path: str, key: bytes):
    fernet = Fernet(key)

    with open(file_path, 'rb') as f:
        audio_data = f.read()

    encrypted_data = fernet.encrypt(audio_data)

    with open(f"{file_path}.encrypted", 'wb') as f:
        f.write(encrypted_data)

    return f"{file_path}.encrypted"

# Client decrypts with user-specific key

Input Validation

from pydantic import BaseModel, validator, constr

class SongUploadRequest(BaseModel):
    title: constr(min_length=1, max_length=200)
    artist_id: int
    duration: int  # seconds
    genre: str

    @validator('duration')
    def validate_duration(cls, v):
        if v < 1 or v > 3600:  # Max 1 hour
            raise ValueError('Duration must be between 1 and 3600 seconds')
        return v

    @validator('genre')
    def validate_genre(cls, v):
        allowed_genres = ['rock', 'pop', 'jazz', 'classical', 'hip-hop']
        if v.lower() not in allowed_genres:
            raise ValueError(f'Genre must be one of {allowed_genres}')
        return v.lower()

DDOS Protection

  • AWS Shield / CloudFlare for network-layer protection
  • Rate limiting at API Gateway
  • Geo-blocking for suspicious regions
  • Web Application Firewall (WAF) rules

Conclusion

Building a music streaming platform like Spotify requires careful consideration of:

  1. Storage: Separating metadata (SQL) from binary files (S3/Blob)
  2. Delivery: Using CDNs to reduce latency and costs
  3. Scalability: Database sharding, caching, and horizontal scaling
  4. Performance: Async operations, connection pooling, batch writes
  5. Security: JWT authentication, signed URLs, encryption, rate limiting
  6. Observability: Comprehensive monitoring, tracing, and alerting

Key Takeaways

โœ… Decouple audio delivery from metadata queries using signed URLs and CDNs

โœ… Batch write operations (play counts, analytics) to reduce database load

โœ… Use multi-tier caching (in-memory โ†’ Redis โ†’ database) for hot data

โœ… Implement adaptive bitrate streaming for optimal user experience

โœ… Design for failure with health checks, circuit breakers, and graceful degradation

โœ… Monitor everything - latency, error rates, cache hit ratios, resource utilization

Further Reading

Video Resources:

Technical Blogs:

Guides & Documentation:


Acknowledgments

This blog post is inspired by and expands upon the system design principles demonstrated in ByteByteGo's System Design Interview Guide. The 7-step framework (Requirements โ†’ Capacity โ†’ Architecture โ†’ Data Model โ†’ API โ†’ Critical Flow โ†’ Scalability) provides an excellent structure for approaching system design interviews and real-world architecture decisions.


This comprehensive guide covers the essential components and advanced considerations for building a production-ready music streaming platform. The architecture can be adapted based on specific business requirements, scale, and available resources.

thongvmdev_M9VMOt
WRITTEN BY

thongvmdev

Share and grow together